Author Affiliations
Abstract
School of Physics, State Key Lab for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Yangtze Delta Institute of Optoelectronics, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
The manipulation of polarization states beyond the optical limit presents advantages in various applications. Considerable progress has been made in the design of meta-waveplates for on-demand polarization transformation, realized by numerical simulations and parameter sweep methodologies. However, due to the limited freedom in these classical strategies, particular challenges arise from the emerging requirement for multiplex optical devices and multidimensional manipulation of light, which urge for a large number of different nanostructures with great polarization control capability. Here, we demonstrate a set of self-designed arbitrary wave plates with a high polarization conversion efficiency. We combine Bayesian optimization and deep neural networks to design perfect half- and quarter-waveplates based on metallic nanostructures, which experimentally demonstrate excellent polarization control functionalities with the conversion ratios of 85% and 90%. More broadly, we develop a comprehensive wave plate database consisting of various metallic nanostructures with high polarization conversion efficiency, accompanying a flexible tuning of phase shifts (02π) and group delays (0–10 fs), and construct an achromatic metalens based on this database. Owing to the versatility and excellent performance, our self-designed wave plates can promote the performance of multiplexed broadband metasurfaces and find potential applications in compact optical devices and polarization division multiplexing optical communications.
Photonics Research
2023, 11(5): 695
作者单位
摘要
1 黑龙江省原子能研究院 哈尔滨 150081
2 烟台哈尔滨工程大学研究院 烟台 264006
采用吸附材料处理铀矿开采、加工及乏燃料后处理产生的含铀废水和吸附海水中的铀为当前研究热点。吸附材料与铀的结合主要是通过官能团的配位作用,其中偕胺肟基团由于对铀具有特异性响应,而表现出优异的吸附选择性。本文归纳了偕胺肟基团的制备方法,对氰基-羟胺法进行了详细介绍。从吸附材料形态和功能角度详述了现阶段偕胺肟单官能团吸附材料的研究进展,同时对-NH2和-AO或-COOH和-AO的双官能团协同吸附进行了介绍,并对偕胺肟基团与铀的配位机理进行了简要分析,最后对偕胺肟基吸附材料的基底材料选择、制备方法和特殊功能性进行了展望。
铀吸附 偕胺肟 制备方法 配位机理 Uranium adsorption Amidoxime Preparation method Coordination mechanism 
辐射研究与辐射工艺学报
2023, 41(1): 010101
Author Affiliations
Abstract
1 School of Physics, State Key Lab for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University Yangtze Delta Institute of Optoelectronics, Peking University, Beijing 100871, China
2 National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
3 College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
4 Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics at Hong Kong, the University of Hong Kong, Pokfulam Road, Hong Kong, China
Photonic topological insulators with robust boundary states can enable great applications for optical communication and quantum emission, such as unidirectional waveguide and single-mode laser. However, because of the diffraction limit of light, the physical insight of topological resonance remains unexplored in detail, like the dark line that exists with the crystalline symmetry-protected topological edge state. Here, we experimentally observe the dark line of the Z2 photonic topological insulator in the visible range by photoluminescence and specify its location by cathodoluminescence characterization, and elucidate its mechanism with the p-d orbital electromagnetic field distribution which calculated by numerical simulation. Our investigation provides a deeper understanding of Z2 topological edge states and may have great significance to the design of future on-chip topological devices.
photonic topological insulator edge state cathodoluminescence TMDC 
Opto-Electronic Advances
2022, 5(4): 210015
Author Affiliations
Abstract
1 Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
2 Institute of Photonic Integration, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
3 QD Laser, Inc., Kawasaki 210-0855, Japan
4 Centre for Photonics Systems, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
5 e-mail: z.cao@tue.nl
Semiconductor mode-locked lasers (MLLs) are promising frequency comb sources for dense wavelength-division-multiplexing (DWDM) data communications. Practical data communication requires a frequency-stable comb source in a temperature-varying environment and a minimum tone spacing of 25 GHz to support high-speed DWDM transmissions. To the best of our knowledge, however, to date, there have been no demonstrations of comb sources that simultaneously offer a high repetition rate and stable mode spacing over an ultrawide temperature range. Here, we report a frequency comb source based on a quantum dot (QD) MLL that generates a frequency comb with stable mode spacing over an ultrabroad temperature range of 20–120°C. The two-section passively mode-locked InAs QD MLL comb source produces an ultra-stable fundamental repetition rate of 25.5 GHz (corresponding to a 25.5 GHz spacing between adjacent tones in the frequency domain) with a variation of 0.07 GHz in the tone spacing over the tested temperature range. By keeping the saturable absorber reversely biased at -2 V, stable mode-locking over the whole temperature range can be achieved by tuning the current of the gain section only, providing easy control of the device. At an elevated temperature of 100°C, the device shows a 6 dB comb bandwidth of 4.81 nm and 31 tones with >36 dB optical signal-to-noise ratio. The corresponding relative intensity noise, averaged between 0.5 GHz and 10 GHz, is -146 dBc/Hz. Our results show the viability of the InAs QD MLLs as ultra-stable, uncooled frequency comb sources for low-cost, large-bandwidth, and low-energy-consumption optical data communications.
Photonics Research
2020, 8(12): 12001937
Author Affiliations
Abstract
School of Physics, State Key Lab for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
Cathodoluminescence (CL) as a radiative light produced by an electron beam exciting a luminescent material, has been widely used in imaging and spectroscopic detection of semiconductor, mineral and biological samples with an ultrahigh spatial resolution. Conventional CL spectroscopy shows an excellent performance in characterization of traditional material luminescence, such as spatial composition variations and fluorescent displays. With the development of nanotechnology, advances of modern microscopy enable CL technique to obtain deep valuable insight of the testing sample, and further extend its applications in the material science, especially for opto-electronic investigations at nanoscale. In this article, we review the study of CL microscopy applied in semiconductor nanostructures for the dislocation, carrier diffusion, band structure, doping level and exciton recombination. Then advantages of CL in revealing and manipulating surface plasmon resonances of metallic nanoantennas are discussed. Finally, the challenge of CL technology is summarized, and potential CL applications for the future opto-electronic study are proposed.
cathodoluminescence microscopy semiconductor metallic nanostructures surface plasmons 
Opto-Electronic Advances
2018, 1(4): 180007
Author Affiliations
Abstract
1 Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, UK
2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
3 Department of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, UK
We report low-noise, high-performance single transverse mode 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on silicon (Si) using molecular beam epitaxy. The fabricated narrow-ridge-waveguide Fabry–Perot (FP) lasers have achieved a room-temperature continuous-wave (CW) threshold current of 12.5 mA and high CW temperature tolerance up to 90°C. An ultra-low relative intensity noise of less than 150 dB/Hz is measured in the 4–16 GHz range. Using this low-noise Si-based laser, we then demonstrate 25.6 Gb/s data transmission over 13.5 km SMF-28. These low-cost FP laser devices are promising candidates to provide cost-effective solutions for use in uncooled Si photonics transmitters in inter/hyper data centers and metropolitan data links.
Photonics Research
2018, 6(11): 11001062

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!